
PHYS3022 Applied Quantum Mechanics Problem Set 2
Due: 14 February 2020 (Friday) “T+2” = 16 February 2020 (Sunday)

Special arrangement for handing in Problem Set 2 via email. In light of the rapid development of the
novel coronavirus, don’t come to campus and don’t come to the Department to hand in your work.
Instead, scan a copy of your work and submit your work via email to cuhkphys3022@gmail.com by 18:00
on the due date. TA will send you a reply confirming receipt of your work.

Please work out the steps of the calculations in detail. Discussions among students are highly encouraged, yet it
is expected that we do your homework independently.

2.0 Reading Assignment. (Don’t need to hand in everything for this item.) We discussed Hermitian oper-
ators and their properties and saw their relevance to Quantum Mechanics. We also discussed important
results related to two Hermitian operators, including the generalized uncertainty relation. We also worked
out the allowed eigenvalues of the angular momentum magnitude squared Ĵ2 and one component (taken to
be Ĵz), entirely based on the commutation relations among Ĵ2, Ĵx, Ĵy, and Ĵz. This discussion on general
angular momentum in QM makes the appearance of spin angular momentum unsurprising. We introduced
the idea behind the Stern-Gerlach (SG) experiment. For charged particles, an angular momentum gives
rise to a magnetic dipole moment. When travelling in an inhomogeneous magnetic field as in the cleverly
designed magnet in SG experiments, a (nonzero) magnetic dipole moment will feel a force and the direc-
tion of the force is related to µz, the component along the magnetic field gradient. For example, µz with
+ve and −ve experience forces in different directions. In SG experiment, atoms with zero orbital angular
momentum (in s state so ` = 0) and thus zero orbital magnetic dipole moment are used. The result is
that the atoms emerge as two beams, one is bent upward and another is bent downward. The experiment
results imply that (a) the atoms carry a nonzero magnetic dipole moment coming from a new angular
momentum (` = 0 orbital angular momentum), (b) the z-component (any component) of the new angular
momentum can take on only two values (because two beams emerged, no more and no less), (c) according
to general results of angular momentum, the z-component must be ±h̄/2 (counting from +h̄/2 to −h̄/2
in step of h̄, thus only two values), and the magnitude squared must be 1

2 ( 1
2 + 1)h̄2 = 3h̄2/4, (d) we

call this angular momentum the SPIN ANGULAR MOMENTUM of the electron, (e) we use s = 1/2 for
electron’s spin and thus it is referred to having spin-half, and ms = +1/2,−1/2 for the two z-component
being +h̄/2 and −h̄/2, (f) by measuring the bending of the two emerging beams, the z-component of the
spin magnetic dipole moment are +µB and −µB , where µB = eh̄/2me is the Bohr Magneton and it is the
basic unit of magnetic dipole moment in atomic physics. These are the essential concepts on spin angular
momentum. Read class notes under Hermitian Operators and Angular Momentum in QM
and Spin Angular Momentum.

Chapters in Rae’s Quantum Mechanics are concise and very readable, Griffiths’ An introduction to quantum
mechanics, and McQuarrie’s Quantum Chemistry are also good places to look up more discussion.

Hermitian Operators
Read/Review class notes on Hermitian Operators (two parts)

2.1 Hermitian Operators. A Hermitian operator Â has the properties that∫
f∗Âg dτ =

∫
gÂ∗f∗ dτ =

∫
g(Âf)∗ dτ =

∫
(Âf)∗g dτ =

(∫
g∗Âf dτ

)∗
(1)

where dτ would mean dx in 1D, d2r in 2D, and d3r in 3D and the integration is over all space.

(a) Give an example with explicit demonstration of the following case: The operators Â and B̂
are Hermitian, but the operator formed by the product ÂB̂ is non-Hermitian.

(b) The momentum (linear momentum to be precise) operator is given by px = h̄
i
d
dx . We know that

px, being a physical quantity, is represented by a Hermitian operator in quantum mechanics. Many
students have been wondering why there is the “i” in the operator. By contrasting h̄ d

dx with h̄
i
d
dx ,

analyze or demonstrate why we need to have the “i” in order to make px Hermitian.

(c) Let Â be a Hermitian operator. Check whether Â+ c, where c is a real constant, is Hermitian.
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(d) Let Â be a Hermitian operator. Check whether Â+ ic, where c is a real constant, is Hermitian.

(e) Show (clearly) that Â commutes with Â2, Â3, etc.

Then we are ready to go to Problem 2.2.

2.2 Function of an operator

In carrying out the “think classical” and “go quantum” process, we encounter plugging in an operator
into a function. Here are some examples. In harmonic oscillator, U(x) = 1

2mω
2x2, which is formally a

function of x (quadratic in x). In nuclear physics, the Woods-Saxon potential (confining nucleons in a
nucleus) has a form of U(x) = −U0/(1 + exp((x− x0)/a)). When we substitute the position operator for
x, then we encounter a function of an operator.

To consider a function of an operator, there are two ingredients. First, there is a function. Let’s call it
f(x). Note that the “x” here does not necessarily mean the position. It is just the variable of a function.
[A single-variable function means that you give it a value of the argument “x”, the function returns you a
value, thus f(x).] We also need an operator Â. When we say there is a function of the operator Â, then
we insert the operator into the function to replace x. The question is: What does f(Â) mean? Why
bother? Formally, for a harmonic oscillator, we know f(x) = 1

2mω
2x2 is the potential energy function.

Then, we form f(x̂) to get the operator form of the potential energy. In doing so, actually we encounter
the concept of f(Â).

The definition of a function of an operator is

f(Â) =
∞∑
n=0

f (n)(0)

n!
Ân (2)

where f (n)(0) is the n-th derivative of the function f(x) and evaluated at x = 0. Learn this. The
meaning is to carry out the following mathematical steps in sequence: (i) Take a Taylor expansion of f(x),
(ii) then all the terms will have the form of xn (see Problem 2.1(e)), and we replace x by the operator, (iii)
the resulting expression then operates on any function that appears on the right hand side of the function
of an operator. Based on the definition, let’s practice.

(a) Based on the definition, write down the meaning of following function of the Hamiltonian operator
Ĥ:

f(Ĥ) = e−iĤt/h̄ ≡ T̂ (3)

The time-independent Schrödinger equation is the eigenvalue problem of the Hamiltonian. Let the
solutions (energy eigenstates and eigenvalues) be

Ĥψm = Emψm . (4)

The set {ψm} can be used to expand any function. Therefore, a general state (need not be an energy
eigenstate) can be written as

Φ =

∞∑
m=0

cmψm . (5)

Work out what T̂ does on Φ, i.e. T̂ Φ = ? Connect the results to the previously discussed procedure
(in PHYS 3021) in answering initial value problems in QM for problems with time independent
U(x). The key take-home message here is: Eq. (2) is the operational meaning of a
function of an operator.

[Remarks: In more advanced courses/books, T̂ is the operator that propagates a wavefunction (a
state) in time. After you work out this problem, the statement becomes obvious.]

(b) So we know what eÂ means. In ordinary mathematics, eA+B = eAeB . But we know that operator

mathematics is in general different from ordinary mathematics. Show that in general eÂ+B̂ 6=
eÂeB̂ and find the condition under which eÂ+B̂ = eÂeB̂ holds.
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2.3 An alternative definition of Hermitian operators (MUST TRY)

We defined the Hermitian operator as one that satisfies∫
f∗Âg dτ =

∫
(Âf)∗g dτ =

∫
g(Âf)∗ dτ =

∫
gÂ∗f∗ dτ =

(∫
g∗Âf dτ

)∗
(6)

in which the definition invokes any two well-behaved functions f and g.

In some books, Hermitian operators are motivated by requiring real expectation values. An expectation
value involves one function instead of two. Thus, an alternative definition invoking only one (but any
one) well-behaving function ψ is∫

ψ∗Âψ dτ =

∫
(Âψ)∗ψ dτ =

∫
ψ(Âψ)∗ dτ =

∫
ψÂ∗ψ∗ dτ =

(∫
ψ∗Âψ dτ

)∗
, (7)

which is obviously a statement of real expectation values.

The question is whether the definition Eq. (7) is consistent with the definition Eq. (6).

Eq. (7) involves only one function. Writing ψ = c1f+c2g, where c1 and c2 are arbitrary complex constants,
f and g are two well-behaved functions, show that the definition in Eq. (7) as applied to ψ gives the
definition Eq. (6) involving two arbitrary well-behaving functions.

Spin Angular Momentum (Learn and Practice)
Read class notes posted under Angular Momentum in QM and Spin Angular Momentum

(six parts)

2.4 Spin-1/2 Angular Momentum and the Pauli Matrices

[In Problem 1.1, you worked on 3 × 3 matrices representing the ` = 1 orbital momentum. It is 3 × 3
because m` = 1, 0,−1 and thus the matrix representing L̂z (or any component) must have 3 eigenvalues.]

The Stern-Gerlach experiment demonstrated that the spin angular momentum of an electron can only take
on two possible values +h̄/2 and −h̄/2 for the z-component (or any component). Thus, 2 × 2 matrices
can be used to represent spin-half angular momentum.

The following matrices for Ŝx, Ŝy and Ŝz work. They are:

[Sx] =
h̄

2
σx =

h̄

2

(
0 1
1 0

)
(8)

[Sy] =
h̄

2
σy =

h̄

2

(
0 −i
i 0

)
(9)

[Sz] =
h̄

2
σz =

h̄

2

(
1 0
0 −1

)
(10)

Without the factors of h̄/2, the Pauli matrices σx, σy, and σz are explicitly given by

σx =

(
0 1
1 0

)
(11)

σy =

(
0 −i
i 0

)
(12)

σz =

(
1 0
0 −1

)
(13)

Here, you will explore the properties of these matrices.

(a) Construct the matrix representing [S2]. Demonstrate explicitly that [Sx], [Sy], [Sz], and [S2]
satisfy the defining commutation relations for an angular momentum in quantum mechanics. Hence,
write down the commutation relations for σx, σy, σz, and σ2.
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(b) Find the eigenvalues and normalized eigenvectors of [Sx], [Sy], and [Sz]. [See class notes for answers,
but you need to work them out explicitly.] Hence, write down the eigenvalues and eigenvectors of
σx, σy, and σz.

(c) From the commutation relations among the components, we know that the eigenvector of one com-
ponent cannot be the eigenvector of another component. Let’s illustrate the point. Show that the
eigenvectors αz (for eigenvalue +h̄/2) and βz (for eigenvalue −h̄/2) of [Sz] are NOT eigenvectors of
[Sx] by operating [Sx] on αz and βz.

(d) Then we have an interesting system to practice our knowledge of measurements in quantum me-
chanics. Let SGz (SGx) be a Stern-Gerlach experiment aligned for measuring the z-component
(x-component) of spin-1/2 particles (electrons). Taking the beam corresponding to Sz = +h̄/2 out
and direct it into SGx, analyze the situation and state what you can say about the possible
outcomes and the corresponding probabilities. Hence, also find the expectation value 〈Sx〉.
Check your value of 〈Sx〉 against plugging in the expectation value formula of (α∗z)

TSx αz, where
(α∗z)

T is the transpose of α∗z.

(e) Now, take the resulting beam in the SGx measurement corresponding to +h̄/2 for Sx out and direct
the beam back into a SGz experiment. Analyze the situation and state what you can say about
the possible outcomes and the corresponding probabilities. Find the expectation value by averaging
over the possibilities and by plugging formula.

[Remark: This can go on and on.]

2.5 Component of spin angular momentum in any direction

You have seen [Sx], [Sy], and [Sz], and that they all have eigenvalues ±h̄/2. The SG experiment can be
placed in any direction and there are always two beams coming out. There is nothing special about x, y,
and z directions. Here, you will study the eigenvalue of the component of spin angular momentum along
an arbitrary direction. An arbitrary direction is specifed by two angles via r = sin θ cosφ î+ sin θ sinφ ĵ+
cos θ k̂, where r is a unit vector along the specified direction. It follows that the component [Sθ,φ] can be
represented by the 2× 2 matrix:

[Sθ,φ] =
h̄

2

(
cos θ sin θ e−iφ

sin θ eiφ − cos θ

)
(14)

It is easy to see that [Sz] emerges when we set θ = 0 (recall spherical coordinates).

Find the eigenvalues of [Sθ,φ]. [Optional (no bonus points): Find the corresponding eigenvectors.]

2.6 More on the Pauli Matrices

(a) Find the trace of the three Pauli matrices. [Hint: You found the eigenvalues in Problem 2.4.]

(b) Find the determinant of the three Pauli matrices.

(c) Find the product σyσz and relate the result to σx. [Reamrk: You may want to explore a cyclic
pattern of this result.]

(d) The commutator of two operators Â and B̂ is defined by [Â, B̂] = ÂB̂ − B̂Â. Let’s define the
anti-commutator to be {Â, B̂} = [Â, B̂]+ ≡ ÂB̂ + B̂Â. Find {σy, σz}.

(e) Find σ2
y by multiplying matrices together.

(f) Here is another way to identify what the operator for [S2
y ] is and then extract the operator σ2

y.
Realizing that a general spin-half state χ can be written in the form of

χ = c1αy + c2βy

where αy (βy) is the eigenstate of Ŝy with eigenvalue +h̄/2 (−h̄/2). By operating Ŝ2
y directly on χ

and realizing χ is a general state, find Ŝ2
y and hence identify σ2

y. [The answer of course should be
the same as that in (e).]

(g) Hence, find {σi, σi}, for i = x, y, and z.

[Remark: At this point, you have worked out all the properties of the Pauli matrices. You will need
them if you go into quantum-X, where X can be computing or information.]
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2.7 Pauli matrices - they help factorize (p2
x + p2

y + p2
z)

When you were in primary school, you knew that p2
x−p2

y = (px+py)(px−py). When you were in secondary
school, you knew that p2

x + p2
y = (px + ipy)(px − ipy). It was a big step forward with the non-trivial idea

of i. Now you are studying physics in university, what’s next? Naturally, the question is to simplify
p2
x + p2

y + p2
z, which is the magnitude squared of a 3-component vector ~p = pxî + py ĵ + pz k̂. A related

question is whether we can write E2 − c2(p2
x + p2

y + p2
z) into a product of two terms.

Let’s form a vector ~σ = σxî+ σy ĵ + σz k̂, where σi are the Pauli matrices. That is to say, each component
is a 2× 2 matrix. Following what you know about dot product of two vectors and matrix manipulations,
evaluate ~σ · ~p and (~σ · ~p)2. [Reamrk: Inspect and appreciate the result and the beauty of mathematics.
Now at the university level, even i is not sufficient, you need to use matrices.]

Hence, express E2 − c2(p2
x + p2

y + p2
z) as a product of two factors.

[Remarks: You may recognize E2 − c2(p2
x + p2

y + p2
z) = 0 as a relativistic relation between energy and

the momentum for a massless particle (no m2c4 term), if ~p is taken to be the momentum. Hence, you
showed that (E + something)(E − something) = 0, and that something is a matrix. In going quantum,
we would get (E− something)ψ = 0, which is a relativistic QM equation. In fact, it is the Dirac equation
for massless fermions. It sounds useless. Not so! It is now a popular topic due to the fact that electrons
in graphene (one layer of graphite) behave like massless fermions! The equation is more complicated for
massive fermions. We need to invoke 4×4 matrices called the Dirac matrices, which are formed by stacking
up the Pauli matrices. The resulting equation is the famous Dirac equation.]
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